1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
|
%%% Copyright (c) 2014, NORDUnet A/S.
%%% See LICENSE for licensing information.
-module(x509).
-export([normalise_chain/2, cert_string/1, read_pemfiles_from_dir/1]).
-include_lib("public_key/include/public_key.hrl").
-include_lib("eunit/include/eunit.hrl").
-type reason() :: {chain_too_long |
root_unknown |
signature_mismatch |
encoding_invalid}.
-define(MAX_CHAIN_LENGTH, 10).
-spec normalise_chain([binary()], [binary()]) -> {ok, [binary()]} |
{error, reason()}.
normalise_chain(AcceptableRootCerts, CertChain) ->
case valid_chain_p(AcceptableRootCerts, CertChain, ?MAX_CHAIN_LENGTH) of
{false, Reason} ->
{error, Reason};
{true, Root} ->
[Leaf | Chain] = CertChain,
{ok, [detox_precert(Leaf) | Chain] ++ Root}
end.
%%%%%%%%%%%%%%%%%%%%
%% @doc Verify that the leaf cert or precert has a valid chain back to
%% an acceptable root cert. Order of certificates in second argument
%% is: leaf cert in head, chain in tail. Order of first argument is
%% irrelevant.
-spec valid_chain_p([binary()], [binary()], integer()) ->
{false, reason()} | {true, list()}.
valid_chain_p(_, _, MaxChainLength) when MaxChainLength =< 0 ->
%% Chain too long.
{false, chain_too_long};
valid_chain_p(AcceptableRootCerts, [TopCert], MaxChainLength) ->
%% Check root of chain.
case lists:member(TopCert, AcceptableRootCerts) of
true ->
%% Top cert is part of chain.
{true, []};
false when MaxChainLength =< 1 ->
%% Chain too long.
{false, chain_too_long};
false ->
%% Top cert _might_ be signed by a cert in truststore.
case signer(TopCert, AcceptableRootCerts) of
notfound -> {false, root_unknown};
Root -> {true, [Root]}
end
end;
valid_chain_p(AcceptableRootCerts, [BottomCert|Rest], MaxChainLength) ->
case signed_by_p(BottomCert, hd(Rest)) of
true -> valid_chain_p(AcceptableRootCerts, Rest, MaxChainLength - 1);
Err -> Err
end.
%% @doc Return first cert in list signing Cert, or notfound. NOTE:
%% This is potentially expensive. It'd be more efficient to search for
%% Cert.issuer in a list of Issuer.subject's. If so, maybe make the
%% matching somewhat fuzzy unless that too is expensive.
-spec signer(binary(), [binary()]) -> notfound | binary().
signer(_Cert, []) ->
notfound;
signer(Cert, [H|T]) ->
case signed_by_p(Cert, H) of
true -> H;
{false, _} -> signer(Cert, T)
end.
%% Code from pubkey_cert:encoded_tbs_cert/1.
encoded_tbs_cert(DerCert) ->
{ok, PKIXCert} =
'OTP-PUB-KEY':decode_TBSCert_exclusive(DerCert),
{'Certificate', {'Certificate_tbsCertificate', EncodedTBSCert}, _, _} =
PKIXCert,
EncodedTBSCert.
%% Code from pubkey_cert:extract_verify_data/2.
verifydata_from_cert(Cert, DerCert) ->
PlainText = encoded_tbs_cert(DerCert),
{_, Sig} = Cert#'Certificate'.signature,
SigAlgRecord = Cert#'Certificate'.signatureAlgorithm,
SigAlg = SigAlgRecord#'AlgorithmIdentifier'.algorithm,
{DigestType,_} = public_key:pkix_sign_types(SigAlg),
{PlainText, DigestType, Sig}.
%% @doc Verify that Cert/DerCert is signed by Issuer.
verify(Cert, DerCert, % Certificate to verify.
#'Certificate'{ % Issuer.
tbsCertificate = #'TBSCertificate'{
subjectPublicKeyInfo = IssuerSPKI}}) ->
%% Dig out digest, digest type and signature from Cert/DerCert.
{DigestOrPlainText, DigestType, Signature} = verifydata_from_cert(Cert,
DerCert),
%% Dig out issuer key from issuer cert.
#'SubjectPublicKeyInfo'{
algorithm = #'AlgorithmIdentifier'{algorithm = Alg, parameters = Params},
subjectPublicKey = {0, Key0}} = IssuerSPKI,
KeyType = pubkey_cert_records:supportedPublicKeyAlgorithms(Alg),
lager:debug("Alg: ~p", [Alg]),
lager:debug("KeyType: ~p", [KeyType]),
lager:debug("Key0: ~p", [Key0]),
IssuerKey =
case KeyType of
'RSAPublicKey' ->
public_key:der_decode(KeyType, Key0);
'DSAPublicKey' ->
{params, DssParams} = public_key:der_decode('DSAParams', Params),
{public_key:der_decode(KeyType, Key0), DssParams};
'ECPoint' ->
public_key:der_decode(KeyType, Key0)
end,
lager:debug("DigestOrPlainText: ~p", [DigestOrPlainText]),
lager:debug("DigestType: ~p", [DigestType]),
lager:debug("Signature: ~p", [Signature]),
lager:debug("IssuerKey: ~p", [IssuerKey]),
%% Verify the signature.
public_key:verify(DigestOrPlainText, DigestType, Signature, IssuerKey).
%% @doc Is Cert signed by Issuer? Only verify that the signature
%% matches and don't check things like Cert.issuer == Issuer.subject.
-spec signed_by_p(binary(), binary()) -> true | {false, reason()}.
signed_by_p(DerCert, IssuerDerCert) when is_binary(DerCert),
is_binary(IssuerDerCert) ->
case verify(public_key:pkix_decode_cert(DerCert, plain),
DerCert,
public_key:pkix_decode_cert(IssuerDerCert, plain)) of
false -> {false, signature_mismatch};
true -> true
end.
-spec public_key(binary() | #'OTPCertificate'{}) -> public_key:public_key().
public_key(CertDer) when is_binary(CertDer) ->
public_key(public_key:pkix_decode_cert(CertDer, otp));
public_key(#'OTPCertificate'{
tbsCertificate =
#'OTPTBSCertificate'{subjectPublicKeyInfo =
#'OTPSubjectPublicKeyInfo'{
subjectPublicKey = Key}}}) ->
Key.
cert_string(Der) ->
mochihex:to_hex(crypto:hash(sha, Der)).
parsable_cert_p(Der) ->
case (catch public_key:pkix_decode_cert(Der, plain)) of
#'Certificate'{} ->
true;
{'EXIT', Reason} ->
lager:info("invalid certificate: ~p: ~p", [cert_string(Der), Reason]),
false;
Unknown ->
lager:info("unknown error decoding cert: ~p: ~p",
[cert_string(Der), Unknown]),
false
end.
%%%%%%%%%%%%%%%%%%%%
%% Precertificates according to draft-ietf-trans-rfc6962-bis-04.
%% Submitted precerts have a special critical poison extension -- OID
%% 1.3.6.1.4.1.11129.2.4.3, whose extnValue OCTET STRING contains
%% ASN.1 NULL data (0x05 0x00).
%% They are signed with either the CA cert that will sign the final
%% cert or Precertificate Signing Certificate directly signed by the
%% CA cert that will sign the final cert. A Precertificate Signing
%% Certificate has CA:true and Extended Key Usage: Certificate
%% Transparency, OID 1.3.6.1.4.1.11129.2.4.4.
%% A PreCert in a SignedCertificateTimestamp does _not_ contain the
%% poison extension, nor a Precertificate Signing Certificate. This
%% means that we might have to 1) remove poison extensions in leaf
%% certs, 2) remove "poisoned signatures", 3) change issuer and
%% Authority Key Identifier of leaf certs.
-spec detox_precert([#'Certificate'{}]) -> [#'Certificate'{}].
detox_precert(CertChain) ->
CertChain. % NYI
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-spec read_pemfiles_from_dir(file:filename()) -> [binary()].
%% @doc Reading certificates from files. Flattening the result -- all
%% certs in all files are returned in a single list.
read_pemfiles_from_dir(Dir) ->
case file:list_dir(Dir) of
{error, enoent} ->
lager:error("directory does not exist: ~p", [Dir]),
[];
{error, Reason} ->
lager:error("unable to read directory ~p: ~p", [Dir, Reason]),
[];
{ok, Filenames} ->
Files = lists:filter(
fun(F) ->
string:equal(".pem", filename:extension(F))
end,
Filenames),
ders_from_pemfiles(Dir, Files)
end.
ders_from_pemfiles(Dir, Filenames) ->
lists:flatten(
[ders_from_pemfile(filename:join(Dir, X)) || X <- Filenames]).
ders_from_pemfile(Filename) ->
PemBins = pems_from_file(Filename),
Pems = case (catch public_key:pem_decode(PemBins)) of
{'EXIT', Reason} ->
lager:info("~p: invalid PEM-encoding: ~p", [Filename, Reason]),
[];
P -> P
end,
[der_from_pem(X) || X <- Pems].
der_from_pem(Pem) ->
case Pem of
{_Type, Der, not_encrypted} ->
case parsable_cert_p(Der) of
true ->
Der;
false ->
dump_unparsable_cert(Der),
[]
end;
Fail ->
lager:info("ignoring PEM-encoded data: ~p~n", [Fail]),
[]
end.
-spec pems_from_file(file:filename()) -> binary().
pems_from_file(Filename) ->
{ok, Pems} = file:read_file(Filename),
Pems.
-spec dump_unparsable_cert(binary()) -> ok | {error, atom()} | not_logged.
dump_unparsable_cert(CertDer) ->
case application:get_env(catlfish, rejected_certs_path) of
{ok, Directory} ->
{NowMegaSec, NowSec, NowMicroSec} = now(),
Filename =
filename:join(Directory,
io_lib:format("~p:~p.~p",
[cert_string(CertDer),
NowMegaSec * 1000 * 1000 + NowSec,
NowMicroSec])),
lager:debug("dumping cert to ~p~n", [Filename]),
file:write_file(Filename, CertDer);
_ ->
not_logged
end.
%%%%%%%%%%%%%%%%%%%%
%% Testing private functions.
-include("x509_test.hrl").
sign_test_() ->
{setup,
fun() -> ok end,
fun(_) -> ok end,
fun(_) -> [?_assertMatch(true, signed_by_p(?C0, ?C1))] end}.
valid_cert_test_() ->
{setup,
fun() -> {read_pemfiles_from_dir("test/testdata/known_roots"),
read_certs("test/testdata/chains")} end,
fun(_) -> ok end,
fun({KnownRoots, Chains}) ->
[
%% self-signed, not a valid OTPCertificate:
%% {error,{asn1,{invalid_choice_tag,{22,<<"US">>}}}}
%% 'OTP-PUB-KEY':Func('OTP-X520countryname', Value0)
%% FIXME: this doesn't make much sense -- is my environment borked?
?_assertMatch({true, _},
valid_chain_p(lists:nth(1, Chains),
lists:nth(1, Chains), 10)),
%% self-signed
?_assertMatch({false, root_unknown},
valid_chain_p(KnownRoots,
lists:nth(2, Chains), 10)),
%% leaf signed by known CA
?_assertMatch({true, _},
valid_chain_p(KnownRoots,
lists:nth(3, Chains), 10)),
%% bug CATLFISH-19 --> [info] rejecting "3ee62cb678014c14d22ebf96f44cc899adea72f1": chain_broken
%% leaf sha1: 3ee62cb678014c14d22ebf96f44cc899adea72f1
%% leaf Subject: C=KR, O=Government of Korea, OU=Group of Server, OU=\xEA\xB5\x90\xEC\x9C\xA1\xEA\xB3\xBC\xED\x95\x99\xEA\xB8\xB0\xEC\x88\xA0\xEB\xB6\x80, CN=www.berea.ac.kr, CN=haksa.bits.ac.kr
?_assertMatch({true, _},
valid_chain_p(lists:nth(4, Chains),
lists:nth(4, Chains), 10))
] end}.
chain_test_() ->
{setup,
fun() -> {?C0, ?C1} end,
fun(_) -> ok end,
fun({C0, C1}) -> chain_test(C0, C1) end}.
chain_test(C0, C1) ->
[
%% Root not in chain but in trust store.
?_assertEqual({true, [C1]}, valid_chain_p([C1], [C0], 10)),
?_assertEqual({true, [C1]}, valid_chain_p([C1], [C0], 2)),
%% Chain too long.
?_assertMatch({false, chain_too_long}, valid_chain_p([C1], [C0], 1)),
%% Root in chain and in trust store.
?_assertEqual({true, []}, valid_chain_p([C1], [C0, C1], 2)),
%% Chain too long.
?_assertMatch({false, chain_too_long}, valid_chain_p([C1], [C0, C1], 1)),
%% Root not in trust store.
?_assertMatch({false, root_unknown}, valid_chain_p([], [C0, C1], 10)),
%% Selfsigned. Actually OK.
?_assertMatch({true, []}, valid_chain_p([C0], [C0], 10)),
?_assertMatch({true, []}, valid_chain_p([C0], [C0], 1)),
%% Max chain length 0 is not OK.
?_assertMatch({false, chain_too_long}, valid_chain_p([C0], [C0], 0))
].
%%-spec read_certs(file:filename()) -> [string:string()].
-spec read_certs(file:filename()) -> [[binary()]].
read_certs(Dir) ->
{ok, Fnames} = file:list_dir(Dir),
PemBins =
[Pems || {ok, Pems} <-
[file:read_file(filename:join(Dir, F)) ||
F <- lists:sort(
lists:filter(
fun(FN) -> string:equal(
".pem", filename:extension(FN))
end,
Fnames))]],
PemEntries = [public_key:pem_decode(P) || P <- PemBins],
lists:map(fun(L) -> [Der || {'Certificate', Der, not_encrypted} <- L] end,
PemEntries).
|