# Copyright (c) 2014, NORDUnet A/S. # See LICENSE for licensing information. import subprocess import json import base64 import urllib import urllib2 import urlparse import struct import sys import hashlib import ecdsa import datetime import cStringIO import zipfile from certkeys import publickeys def get_cert_info(s): p = subprocess.Popen( ["openssl", "x509", "-noout", "-subject", "-issuer", "-inform", "der"], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) parsed = p.communicate(s) if parsed[1]: print "ERROR:", parsed[1] sys.exit(1) result = {} for line in parsed[0].split("\n"): (key, sep, value) = line.partition("=") if sep == "=": result[key] = value return result def get_pemlike(filename, marker): return get_pemlike_from_file(open(filename), marker) def get_pemlike_from_file(f, marker): entries = [] entry = "" inentry = False for line in f: line = line.strip() if line == "-----BEGIN " + marker + "-----": entry = "" inentry = True elif line == "-----END " + marker + "-----": entries.append(base64.decodestring(entry)) inentry = False elif inentry: entry += line return entries def get_certs_from_file(certfile): return get_pemlike(certfile, "CERTIFICATE") def get_certs_from_string(s): f = cStringIO.StringIO(s) return get_pemlike_from_file(f, "CERTIFICATE") def get_precerts_from_string(s): f = cStringIO.StringIO(s) return get_pemlike_from_file(f, "PRECERTIFICATE") def get_eckey_from_file(keyfile): keys = get_pemlike(keyfile, "EC PRIVATE KEY") assert len(keys) == 1 return keys[0] def get_root_cert(issuer): accepted_certs = \ json.loads(open("googlelog-accepted-certs.txt").read())["certificates"] root_cert = None for accepted_cert in accepted_certs: subject = get_cert_info(base64.decodestring(accepted_cert))["subject"] if subject == issuer: root_cert = base64.decodestring(accepted_cert) return root_cert def get_sth(baseurl): result = urllib2.urlopen(baseurl + "ct/v1/get-sth").read() return json.loads(result) def get_proof_by_hash(baseurl, hash, tree_size): try: params = urllib.urlencode({"hash":base64.b64encode(hash), "tree_size":tree_size}) result = \ urllib2.urlopen(baseurl + "ct/v1/get-proof-by-hash?" + params).read() return json.loads(result) except urllib2.HTTPError, e: print "ERROR:", e.read() sys.exit(1) def get_consistency_proof(baseurl, tree_size1, tree_size2): try: params = urllib.urlencode({"first":tree_size1, "second":tree_size2}) result = \ urllib2.urlopen(baseurl + "ct/v1/get-sth-consistency?" + params).read() return json.loads(result)["consistency"] except urllib2.HTTPError, e: print "ERROR:", e.read() sys.exit(1) def tls_array(data, length_len): length_bytes = struct.pack(">Q", len(data))[-length_len:] return length_bytes + data def unpack_tls_array(packed_data, length_len): padded_length = ["\x00"] * 8 padded_length[-length_len:] = packed_data[:length_len] (length,) = struct.unpack(">Q", "".join(padded_length)) unpacked_data = packed_data[length_len:length_len+length] assert len(unpacked_data) == length, \ "data is only %d bytes long, but length is %d bytes" % \ (len(unpacked_data), length) rest_data = packed_data[length_len+length:] return (unpacked_data, rest_data) def add_chain(baseurl, submission): try: result = urllib2.urlopen(baseurl + "ct/v1/add-chain", json.dumps(submission)).read() return json.loads(result) except urllib2.HTTPError, e: print "ERROR", e.code,":", e.read() if e.code == 400: return None sys.exit(1) except ValueError, e: print "==== FAILED REQUEST ====" print submission print "======= RESPONSE =======" print result print "========================" raise e def add_prechain(baseurl, submission): try: result = urllib2.urlopen(baseurl + "ct/v1/add-pre-chain", json.dumps(submission)).read() return json.loads(result) except urllib2.HTTPError, e: print "ERROR", e.code,":", e.read() if e.code == 400: return None sys.exit(1) except ValueError, e: print "==== FAILED REQUEST ====" print submission print "======= RESPONSE =======" print result print "========================" raise e def get_entries(baseurl, start, end): try: params = urllib.urlencode({"start":start, "end":end}) result = urllib2.urlopen(baseurl + "ct/v1/get-entries?" + params).read() return json.loads(result) except urllib2.HTTPError, e: print "ERROR:", e.read() sys.exit(1) def extract_precertificate(precert_chain_entry): (precert, certchain) = unpack_tls_array(precert_chain_entry, 3) return (precert, certchain) def decode_certificate_chain(packed_certchain): (unpacked_certchain, rest) = unpack_tls_array(packed_certchain, 3) assert len(rest) == 0 certs = [] while len(unpacked_certchain): (cert, rest) = unpack_tls_array(unpacked_certchain, 3) certs.append(cert) unpacked_certchain = rest return certs def decode_signature(signature): (hash_alg, signature_alg) = struct.unpack(">bb", signature[0:2]) (unpacked_signature, rest) = unpack_tls_array(signature[2:], 2) assert rest == "" return (hash_alg, signature_alg, unpacked_signature) def encode_signature(hash_alg, signature_alg, unpacked_signature): signature = struct.pack(">bb", hash_alg, signature_alg) signature += tls_array(unpacked_signature, 2) return signature def check_signature(baseurl, signature, data): publickey = base64.decodestring(publickeys[baseurl]) (hash_alg, signature_alg, unpacked_signature) = decode_signature(signature) assert hash_alg == 4, \ "hash_alg is %d, expected 4" % (hash_alg,) # sha256 assert signature_alg == 3, \ "signature_alg is %d, expected 3" % (signature_alg,) # ecdsa vk = ecdsa.VerifyingKey.from_der(publickey) vk.verify(unpacked_signature, data, hashfunc=hashlib.sha256, sigdecode=ecdsa.util.sigdecode_der) def http_request(url, data=None, key=None): req = urllib2.Request(url, data) (keyname, keyfile) = key privatekey = get_eckey_from_file(keyfile) sk = ecdsa.SigningKey.from_der(privatekey) parsed_url = urlparse.urlparse(url) if data == None: data = parsed_url.query method = "GET" else: method = "POST" signature = sk.sign("%s\0%s\0%s" % (method, parsed_url.path, data), hashfunc=hashlib.sha256, sigencode=ecdsa.util.sigencode_der) req.add_header('X-Catlfish-Auth', base64.b64encode(signature) + ";key=" + keyname) result = urllib2.urlopen(req).read() return result def get_signature(baseurl, data, key=None): try: params = json.dumps({"plop_version":1, "data": base64.b64encode(data)}) result = http_request(baseurl + "ct/signing/sth", params, key=key) parsed_result = json.loads(result) return base64.b64decode(parsed_result.get(u"result")) except urllib2.HTTPError, e: print "ERROR: get_signature", e.read() sys.exit(1) def create_signature(baseurl, data, key=None): unpacked_signature = get_signature(baseurl, data, key) return encode_signature(4, 3, unpacked_signature) def check_sth_signature(baseurl, sth): signature = base64.decodestring(sth["tree_head_signature"]) version = struct.pack(">b", 0) signature_type = struct.pack(">b", 1) timestamp = struct.pack(">Q", sth["timestamp"]) tree_size = struct.pack(">Q", sth["tree_size"]) hash = base64.decodestring(sth["sha256_root_hash"]) tree_head = version + signature_type + timestamp + tree_size + hash check_signature(baseurl, signature, tree_head) def create_sth_signature(tree_size, timestamp, root_hash, baseurl, key=None): version = struct.pack(">b", 0) signature_type = struct.pack(">b", 1) timestamp_packed = struct.pack(">Q", timestamp) tree_size_packed = struct.pack(">Q", tree_size) tree_head = version + signature_type + timestamp_packed + tree_size_packed + root_hash return create_signature(baseurl, tree_head, key=key) def check_sct_signature(baseurl, leafcert, sct): publickey = base64.decodestring(publickeys[baseurl]) calculated_logid = hashlib.sha256(publickey).digest() received_logid = base64.decodestring(sct["id"]) assert calculated_logid == received_logid, \ "log id is incorrect:\n should be %s\n got %s" % \ (calculated_logid.encode("hex_codec"), received_logid.encode("hex_codec")) signature = base64.decodestring(sct["signature"]) version = struct.pack(">b", sct["sct_version"]) signature_type = struct.pack(">b", 0) timestamp = struct.pack(">Q", sct["timestamp"]) entry_type = struct.pack(">H", 0) signed_struct = version + signature_type + timestamp + \ entry_type + tls_array(leafcert, 3) + \ tls_array(base64.decodestring(sct["extensions"]), 2) check_signature(baseurl, signature, signed_struct) def pack_mtl(timestamp, leafcert): entry_type = struct.pack(">H", 0) extensions = "" timestamped_entry = struct.pack(">Q", timestamp) + entry_type + \ tls_array(leafcert, 3) + tls_array(extensions, 2) version = struct.pack(">b", 0) leaf_type = struct.pack(">b", 0) merkle_tree_leaf = version + leaf_type + timestamped_entry return merkle_tree_leaf def unpack_mtl(merkle_tree_leaf): version = merkle_tree_leaf[0:1] leaf_type = merkle_tree_leaf[1:2] timestamped_entry = merkle_tree_leaf[2:] (timestamp, entry_type) = struct.unpack(">QH", timestamped_entry[0:10]) if entry_type == 0: issuer_key_hash = None (leafcert, rest_entry) = unpack_tls_array(timestamped_entry[10:], 3) elif entry_type == 1: issuer_key_hash = timestamped_entry[10:42] (leafcert, rest_entry) = unpack_tls_array(timestamped_entry[42:], 3) return (leafcert, timestamp, issuer_key_hash) def get_leaf_hash(merkle_tree_leaf): leaf_hash = hashlib.sha256() leaf_hash.update(struct.pack(">b", 0)) leaf_hash.update(merkle_tree_leaf) return leaf_hash.digest() def timing_point(timer_dict=None, name=None): t = datetime.datetime.now() if timer_dict: starttime = timer_dict["lasttime"] stoptime = t deltatime = stoptime - starttime timer_dict["deltatimes"].append((name, deltatime.seconds * 1000000 + deltatime.microseconds)) timer_dict["lasttime"] = t return None else: timer_dict = {"deltatimes":[], "lasttime":t} return timer_dict def internal_hash(pair): if len(pair) == 1: return pair[0] else: hash = hashlib.sha256() hash.update(struct.pack(">b", 1)) hash.update(pair[0]) hash.update(pair[1]) return hash.digest() def chunks(l, n): return [l[i:i+n] for i in range(0, len(l), n)] def next_merkle_layer(layer): return [internal_hash(pair) for pair in chunks(layer, 2)] def build_merkle_tree(layer0): if len(layer0) == 0: return [[hashlib.sha256().digest()]] layers = [] current_layer = layer0 layers.append(current_layer) while len(current_layer) > 1: current_layer = next_merkle_layer(current_layer) layers.append(current_layer) return layers def print_inclusion_proof(proof): audit_path = proof[u'audit_path'] n = proof[u'leaf_index'] level = 0 for s in audit_path: entry = base64.b16encode(base64.b64decode(s)) n ^= 1 print level, n, entry n >>= 1 level += 1 def get_one_cert(store, i): filename = i / 10000 zf = zipfile.ZipFile("%s/%04d.zip" % (store, i / 10000)) cert = zf.read("%08d" % i) zf.close() return cert def get_hash_from_certfile(cert): for line in cert.split("\n"): if line.startswith("-----"): return None if line.startswith("Leafhash: "): return base64.b16decode(line[len("Leafhash: "):]) return None def get_proof(store, tree_size, n): hash = get_hash_from_certfile(get_one_cert(store, n)) return get_proof_by_hash(args.baseurl, hash, tree_size) def get_certs_from_zipfiles(zipfiles, firstleaf, lastleaf): for i in range(firstleaf, lastleaf + 1): try: yield zipfiles[i / 10000].read("%08d" % i) except KeyError: return def get_merkle_hash_64k(store, blocknumber, write_to_cache=False, treesize=None): firstleaf = blocknumber * 65536 lastleaf = firstleaf + 65535 if treesize != None: assert firstleaf < treesize usecache = lastleaf < treesize lastleaf = min(lastleaf, treesize - 1) else: usecache = True hashfilename = "%s/%04x.64khash" % (store, blocknumber) if usecache: try: hash = base64.b16decode(open(hashfilename).read()) assert len(hash) == 32 return ("hash", hash) except IOError: pass firstfile = firstleaf / 10000 lastfile = lastleaf / 10000 zipfiles = {} for i in range(firstfile, lastfile + 1): try: zipfiles[i] = zipfile.ZipFile("%s/%04d.zip" % (store, i)) except IOError: break certs = get_certs_from_zipfiles(zipfiles, firstleaf, lastleaf) layer0 = [get_hash_from_certfile(cert) for cert in certs] tree = build_merkle_tree(layer0) calculated_hash = tree[-1][0] for zf in zipfiles.values(): zf.close() if len(layer0) != lastleaf - firstleaf + 1: return ("incomplete", (len(layer0), calculated_hash)) if write_to_cache: f = open(hashfilename, "w") f.write(base64.b16encode(calculated_hash)) f.close() return ("hash", calculated_hash) def get_tree_head(store, treesize): merkle_64klayer = [] for blocknumber in range(0, (treesize / 65536) + 1): (resulttype, result) = get_merkle_hash_64k(store, blocknumber, treesize=treesize) if resulttype == "incomplete": print >>sys.stderr, "Couldn't read until tree size", treesize (incompletelength, hash) = result print >>sys.stderr, "Stopped at", blocknumber * 65536 + incompletelength sys.exit(1) assert resulttype == "hash" hash = result merkle_64klayer.append(hash) #print >>sys.stderr, print blocknumber * 65536, sys.stdout.flush() tree = build_merkle_tree(merkle_64klayer) calculated_root_hash = tree[-1][0] return calculated_root_hash def get_intermediate_hash(store, treesize, level, index): if level >= 16: merkle_64klayer = [] levelsize = (2**(level-16)) for blocknumber in range(index * levelsize, (index + 1) * levelsize): if blocknumber * (2 ** 16) >= treesize: break #print "looking at block", blocknumber (resulttype, result) = get_merkle_hash_64k(store, blocknumber, treesize=treesize) if resulttype == "incomplete": print >>sys.stderr, "Couldn't read until tree size", treesize (incompletelength, hash) = result print >>sys.stderr, "Stopped at", blocknumber * 65536 + incompletelength sys.exit(1) assert resulttype == "hash" hash = result #print "block hash", base64.b16encode(hash) merkle_64klayer.append(hash) #print >>sys.stderr, print blocknumber * 65536, sys.stdout.flush() tree = build_merkle_tree(merkle_64klayer) return tree[-1][0] else: levelsize = 2 ** level firstleaf = index * levelsize lastleaf = firstleaf + levelsize - 1 #print "firstleaf", firstleaf #print "lastleaf", lastleaf assert firstleaf < treesize lastleaf = min(lastleaf, treesize - 1) #print "modified lastleaf", lastleaf firstfile = firstleaf / 10000 lastfile = lastleaf / 10000 #print "files", firstfile, lastfile zipfiles = {} for i in range(firstfile, lastfile + 1): try: zipfiles[i] = zipfile.ZipFile("%s/%04d.zip" % (store, i)) except IOError: break certs = get_certs_from_zipfiles(zipfiles, firstleaf, lastleaf) layer0 = [get_hash_from_certfile(cert) for cert in certs] #print "layer0", repr(layer0) tree = build_merkle_tree(layer0) calculated_hash = tree[-1][0] for zf in zipfiles.values(): zf.close() assert len(layer0) == lastleaf - firstleaf + 1 return calculated_hash def bits(n): p = 0 while n > 0: n >>= 1 p += 1 return p def merkle_height(n): if n == 0: return 1 return bits(n - 1) def node_above((pathp, pathl), levels=1): return (pathp >> levels, pathl + levels) def node_even((pathp, pathl)): return pathp & 1 == 0 def node_odd((pathp, pathl)): return pathp & 1 == 1 def node_lower((path1p, path1l), (path2p, path2l)): return path1l < path2l def node_higher((path1p, path1l), (path2p, path2l)): return path1l > path2l def node_level((path1p, path1l)): return path1l def node_outside((path1p, path1l), (path2p, path2l)): assert path1l == path2l return path1p > path2p def combine_two_hashes((path1, hash1), (path2, hash2), treesize): assert not node_higher(path1, path2) edge_node = (treesize - 1, 0) if node_lower(path1, path2): assert path1 == node_above(edge_node, levels=node_level(path1)) while node_even(path1): path1 = node_above(path1) assert node_above(path1) == node_above(path2) assert (node_even(path1) and node_odd(path2)) or (node_odd(path1) and node_even(path2)) if node_outside(path2, node_above(edge_node, levels=node_level(path2))): return (node_above(path1), hash1) if node_even(path1): newhash = internal_hash((hash1, hash2)) else: newhash = internal_hash((hash2, hash1)) return (node_above(path1), newhash) def path_as_string(pos, level, treesize): height = merkle_height(treesize) path = "{0:0{width}b}".format(pos, width=height - level) if height == level: return "" return path def nodes_for_subtree(subtreesize, treesize): height = merkle_height(treesize) nodes = [] level = 0 pos = subtreesize while pos > 0 and pos & 1 == 0: pos >>= 1 level += 1 if pos & 1: nodes.append((pos ^ 1, level)) #print pos, level while level < height: pos_level0 = pos * (2 ** level) #print pos, level if pos_level0 < treesize: nodes.append((pos, level)) pos >>= 1 pos ^= 1 level += 1 return nodes def nodes_for_index(pos, treesize): height = merkle_height(treesize) nodes = [] level = 0 pos ^= 1 #print pos, level while level < height: pos_level0 = pos * (2 ** level) #print pos, level if pos_level0 < treesize: nodes.append((pos, level)) pos >>= 1 pos ^= 1 level += 1 return nodes def verify_consistency_proof(consistency_proof, first, second, oldhash_input): if 2 ** bits(first - 1) == first: consistency_proof = [oldhash_input] + consistency_proof chain = zip(nodes_for_subtree(first, second), consistency_proof) assert len(nodes_for_subtree(first, second)) == len(consistency_proof) (_, hash) = reduce(lambda e1, e2: combine_two_hashes(e1, e2, second), chain) (_, oldhash) = reduce(lambda e1, e2: combine_two_hashes(e1, e2, first), chain) return (oldhash, hash) def verify_inclusion_proof(inclusion_proof, index, treesize, leafhash): chain = zip([(index, 0)] + nodes_for_index(index, treesize), [leafhash] + inclusion_proof) assert len(nodes_for_index(index, treesize)) == len(inclusion_proof) (_, hash) = reduce(lambda e1, e2: combine_two_hashes(e1, e2, treesize), chain) return hash