%% The MIT License (MIT) %% %% Copyright (c) 2015 Hinagiku Soranoba %% %% Permission is hereby granted, free of charge, to any person obtaining a copy %% of this software and associated documentation files (the "Software"), to deal %% in the Software without restriction, including without limitation the rights %% to use, copy, modify, merge, publish, distribute, sublicense, and/or sell %% copies of the Software, and to permit persons to whom the Software is %% furnished to do so, subject to the following conditions: %% %% The above copyright notice and this permission notice shall be included in all %% copies or substantial portions of the Software. %% %% @doc Mustache template engine for Erlang/OTP. -module(rebar_mustache). %%---------------------------------------------------------------------------------------------------------------------- %% Exported API %%---------------------------------------------------------------------------------------------------------------------- -export([ render/2, parse_binary/1, parse_file/1, compile/2 ]). -export_type([ template/0, data/0 ]). %%---------------------------------------------------------------------------------------------------------------------- %% Defines & Records & Types %%---------------------------------------------------------------------------------------------------------------------- -define(PARSE_ERROR, incorrect_format). -define(FILE_ERROR, file_not_found). -define(COND(Cond, TValue, FValue), case Cond of true -> TValue; false -> FValue end). -type key() :: binary(). -type tag() :: {n, key()} | {'&', key()} | {'#', key(), [tag()], Source :: binary()} | {'^', key(), [tag()]} | binary(). -record(state, { dirname = <<>> :: file:filename_all(), start = <<"{{">> :: binary(), stop = <<"}}">> :: binary() }). -type state() :: #state{}. -record(?MODULE, { data :: [tag()] }). -opaque template() :: #?MODULE{}. %% @see parse_binary/1 %% @see parse_file/1 -ifdef(namespaced_types). -type data() :: #{string() => data() | iodata() | fun((data(), function()) -> iodata())}. -else. -type data() :: dict(). -endif. %% @see render/2 %% @see compile/2 -type partial() :: {partial, {state(), EndTag :: binary(), LastTagSize :: non_neg_integer(), Rest :: binary(), [tag()]}}. %%---------------------------------------------------------------------------------------------------------------------- %% Exported Functions %%---------------------------------------------------------------------------------------------------------------------- %% @equiv compile(parse_binary(Bin), Map) -spec render(binary(), data()) -> binary(). render(Bin, Map) -> compile(parse_binary(Bin), Map). %% @doc Create a {@link template/0} from a binary. -spec parse_binary(binary()) -> template(). parse_binary(Bin) when is_binary(Bin) -> parse_binary_impl(#state{}, Bin). %% @doc Create a {@link template/0} from a file. -spec parse_file(file:filename()) -> template(). parse_file(Filename) -> case file:read_file(Filename) of {ok, Bin} -> parse_binary_impl(#state{dirname = filename:dirname(Filename)}, Bin); _ -> error(?FILE_ERROR, [Filename]) end. %% @doc Embed the data in the template. -spec compile(template(), data()) -> binary(). compile(#?MODULE{data = Tags}, Map) -> ec_cnv:to_binary(lists:reverse(compile_impl(Tags, Map, []))). %%---------------------------------------------------------------------------------------------------------------------- %% Internal Function %%---------------------------------------------------------------------------------------------------------------------- %% @doc {@link compile/2} %% %% ATTENTION: The result is a list that is inverted. -spec compile_impl(Template :: [tag()], data(), Result :: iodata()) -> iodata(). compile_impl([], _, Result) -> Result; compile_impl([{n, Key} | T], Map, Result) -> compile_impl(T, Map, [escape(to_binary(dict_get(binary_to_list(Key), Map, <<>>))) | Result]); compile_impl([{'&', Key} | T], Map, Result) -> compile_impl(T, Map, [to_binary(dict_get(binary_to_list(Key), Map, <<>>)) | Result]); compile_impl([{'#', Key, Tags, Source} | T], Map, Result) -> Value = dict_get(binary_to_list(Key), Map, undefined), if is_list(Value) -> compile_impl(T, Map, lists:foldl(fun(X, Acc) -> compile_impl(Tags, X, Acc) end, Result, Value)); Value =:= false; Value =:= undefined -> compile_impl(T, Map, Result); is_function(Value, 2) -> compile_impl(T, Map, [Value(Source, fun(Text) -> render(Text, Map) end) | Result]); %is_dict(Value) -> compile_impl(T, Map, compile_impl(Tags, Value, Result)); true -> compile_impl(T, Map, compile_impl(Tags, Map, Result)) end; compile_impl([{'^', Key, Tags} | T], Map, Result) -> Value = dict_get(binary_to_list(Key), Map, undefined), case Value =:= undefined orelse Value =:= [] orelse Value =:= false of true -> compile_impl(T, Map, compile_impl(Tags, Map, Result)); false -> compile_impl(T, Map, Result) end; compile_impl([Bin | T], Map, Result) -> compile_impl(T, Map, [Bin | Result]). %% @see parse_binary/1 -spec parse_binary_impl(state(), Input :: binary()) -> template(). parse_binary_impl(State, Input) -> #?MODULE{data = parse(State, Input)}. %% @doc Analyze the syntax of the mustache. -spec parse(state(), binary()) -> [tag()]. parse(State, Bin) -> case parse1(State, Bin, []) of {partial, _} -> error(?PARSE_ERROR); {_, Tags} -> lists:reverse(Tags) end. %% @doc Part of the `parse/1' %% %% ATTENTION: The result is a list that is inverted. -spec parse1(state(), Input :: binary(), Result :: [tag()]) -> {state(), [tag()]} | partial(). parse1(#state{start = Start, stop = Stop} = State, Bin, Result) -> case binary:split(Bin, Start) of [] -> {State, Result}; [B1] -> {State, [B1 | Result]}; [B1, <<"{", B2/binary>>] -> parse2(State, binary:split(B2, <<"}", Stop/binary>>), [B1 | Result]); [B1, B2] -> parse3(State, binary:split(B2, Stop), [B1 | Result]) end. %% @doc Part of the `parse/1' %% %% ATTENTION: The result is a list that is inverted. parse2(State, [B1, B2], Result) -> parse1(State, B2, [{'&', remove_space_from_edge(B1)} | Result]); parse2(_, _, _) -> error(?PARSE_ERROR). %% @doc Part of the `parse/1' %% %% ATTENTION: The result is a list that is inverted. parse3(State, [B1, B2], Result) -> case remove_space_from_head(B1) of <<"&", Tag/binary>> -> parse1(State, B2, [{'&', remove_space_from_edge(Tag)} | Result]); <> when T =:= $#; T =:= $^ -> parse_loop(State, ?COND(T =:= $#, '#', '^'), remove_space_from_edge(Tag), B2, Result); <<"=", Tag0/binary>> -> Tag1 = remove_space_from_tail(Tag0), Size = byte_size(Tag1) - 1, case Size >= 0 andalso Tag1 of <> -> parse1(State, B2, Result); <<"/", Tag/binary>> -> {partial, {State, remove_space_from_edge(Tag), byte_size(B1) + 4, B2, Result}}; <<">", Tag/binary>> -> parse_jump(State, remove_space_from_edge(Tag), B2, Result); Tag -> parse1(State, B2, [{n, remove_space_from_tail(Tag)} | Result]) end; parse3(_, _, _) -> error(?PARSE_ERROR). %% @doc Loop processing part of the `parse/1' %% %% `{{# Tag}}' or `{{^ Tag}}' corresponds to this. -spec parse_loop(state(), '#' | '^', Tag :: binary(), Input :: binary(), Result :: [tag()]) -> [tag()] | partial(). parse_loop(State0, Mark, Tag, Input, Result0) -> case parse1(State0, Input, []) of {partial, {State, Tag, LastTagSize, Rest, Result1}} when is_list(Result1) -> case Mark of '#' -> Source = binary:part(Input, 0, byte_size(Input) - byte_size(Rest) - LastTagSize), parse1(State, Rest, [{'#', Tag, lists:reverse(Result1), Source} | Result0]); '^' -> parse1(State, Rest, [{'^', Tag, lists:reverse(Result1)} | Result0]) end; _ -> error(?PARSE_ERROR) end. %% @doc Partial part of the `parse/1' -spec parse_jump(state(), Tag :: binary(), NextBin :: binary(), Result :: [tag()]) -> [tag()] | partial(). parse_jump(#state{dirname = Dirname} = State0, Tag, NextBin, Result0) -> Filename0 = <>, Filename = filename:join(?COND(Dirname =:= <<>>, [Filename0], [Dirname, Filename0])), case file:read_file(Filename) of {ok, Bin} -> case parse1(State0, Bin, Result0) of {partial, _} -> error(?PARSE_ERROR); {State, Result} -> parse1(State, NextBin, Result) end; _ -> error(?FILE_ERROR, [Filename]) end. %% @doc Update delimiter part of the `parse/1' %% %% Parse_BinaryDelimiterBin :: e.g. `{{=%% %%=}}' -> `%% %%' -spec parse_delimiter(state(), Parse_BinaryDelimiterBin :: binary(), NextBin :: binary(), Result :: [tag()]) -> [tag()] | partial(). parse_delimiter(State0, Parse_BinaryDelimiterBin, NextBin, Result) -> case binary:match(Parse_BinaryDelimiterBin, <<"=">>) of nomatch -> case [X || X <- binary:split(Parse_BinaryDelimiterBin, <<" ">>, [global]), X =/= <<>>] of [Start, Stop] -> parse1(State0#state{start = Start, stop = Stop}, NextBin, Result); _ -> error(?PARSE_ERROR) end; _ -> error(?PARSE_ERROR) end. %% @doc Remove the space from the edge. -spec remove_space_from_edge(binary()) -> binary(). remove_space_from_edge(Bin) -> remove_space_from_tail(remove_space_from_head(Bin)). %% @doc Remove the space from the head. -spec remove_space_from_head(binary()) -> binary(). remove_space_from_head(<<" ", Rest/binary>>) -> remove_space_from_head(Rest); remove_space_from_head(Bin) -> Bin. %% @doc Remove the space from the tail. -spec remove_space_from_tail(binary()) -> binary(). remove_space_from_tail(<<>>) -> <<>>; remove_space_from_tail(Bin) -> PosList = binary:matches(Bin, <<" ">>), LastPos = remove_space_from_tail_impl(lists:reverse(PosList), byte_size(Bin)), binary:part(Bin, 0, LastPos). %% @see remove_space_from_tail/1 -spec remove_space_from_tail_impl([{non_neg_integer(), pos_integer()}], non_neg_integer()) -> non_neg_integer(). remove_space_from_tail_impl([{X, Y} | T], Size) when Size =:= X + Y -> remove_space_from_tail_impl(T, X); remove_space_from_tail_impl(_, Size) -> Size. %% @doc Number to binary -spec to_binary(number() | binary() | string()) -> binary() | string(). to_binary(Integer) when is_integer(Integer) -> ec_cnv:to_binary(Integer); to_binary(Float) when is_float(Float) -> io_lib:format("~p", [Float]); to_binary(X) -> X. %% @doc HTML Escape -spec escape(iodata()) -> binary(). escape(IoData) -> Bin = ec_cnv:to_binary(IoData), << <<(escape_char(X))/binary>> || <> <= Bin >>. %% @see escape/1 -spec escape_char(0..16#FFFF) -> binary(). escape_char($<) -> <<"<">>; escape_char($>) -> <<">">>; escape_char($&) -> <<"&">>; escape_char($") -> <<""">>; escape_char($') -> <<"'">>; escape_char(C) -> <>. dict_get(Key, Dict, Default) -> case dict:find(ec_cnv:to_atom(Key), Dict) of {ok, Value} -> Value; error -> Default end.