-module(rebar_dialyzer_format). -include("rebar.hrl"). -export([format_warnings/1]). format_warnings(Warnings) -> {_, Res} = lists:foldl(fun format_warning_/2, {undefined, []}, Warnings), lists:reverse(Res). format_warning_(Warning = {_Tag, {File, Line}, Msg}, {File, Acc}) -> try String = message_to_string(Msg), {File, [lists:flatten(fmt("~!c~4w~!!: ~s", [Line, String])) | Acc]} catch Error:Reason -> ?DEBUG("Failed to pretty format warning: ~p:~p", [Error, Reason]), {File, [dialyzer:format_warning(Warning, fullpath) | Acc]} end; format_warning_(Warning = {_Tag, {File, Line}, Msg}, {_LastFile, Acc}) -> try Base = filename:basename(File), Dir = filename:dirname(File), Root = filename:rootname(Base), Ext = filename:extension(Base), Path = re:replace(Dir, "^.*/_build/", "_build/", [{return, list}]), Base1 = fmt("~!_c~s~!!~!__~s", [Root, Ext]), F = fmt("~!__~s", [filename:join(Path, Base1)]), String = message_to_string(Msg), {File, [lists:flatten(fmt("~n~s~n~!c~4w~!!: ~s", [F, Line, String])) | Acc]} catch Error:Reason -> ?DEBUG("Failed to pretty format warning: ~p:~p~n~p", [Error, Reason, erlang:get_stacktrace()]), {File, [dialyzer:format_warning(Warning, fullpath) | Acc]} end. fmt(Fmt) -> cf:format(Fmt, []). fmt(Fmt, Args) -> cf:format(Fmt, Args). %%----------------------------------------------------------------------------- %% Message classification and pretty-printing below. Messages appear in %% categories and in more or less alphabetical ordering within each category. %%----------------------------------------------------------------------------- %%----- Warnings for general discrepancies ---------------- message_to_string({apply, [Args, ArgNs, FailReason, SigArgs, SigRet, Contract]}) -> fmt("~!^Fun application with arguments ~!!~s ", [bad_arg(ArgNs, Args)]) ++ call_or_apply_to_string(ArgNs, FailReason, SigArgs, SigRet, Contract); message_to_string({app_call, [M, F, Args, Culprit, ExpectedType, FoundType]}) -> fmt("~!^The call~!! ~s:~s~s ~!^requires that" "~!! ~s ~!^is of type ~!g~s~!^ not ~!r~s", [M, F, Args, Culprit, ExpectedType, FoundType]); message_to_string({bin_construction, [Culprit, Size, Seg, Type]}) -> fmt("~!^Binary construction will fail since the ~!b~s~!^ field~!!" " ~s~!^ in segment~!! ~s~!^ has type~!! ~s", [Culprit, Size, Seg, Type]); message_to_string({call, [M, F, Args, ArgNs, FailReason, SigArgs, SigRet, Contract]}) -> fmt("~!^The call~!! ~w:~w~s ", [M, F, bad_arg(ArgNs, Args)]) ++ call_or_apply_to_string(ArgNs, FailReason, SigArgs, SigRet, Contract); message_to_string({call_to_missing, [M, F, A]}) -> fmt("~!^Call to missing or unexported function ~!!~w:~w/~w", [M, F, A]); message_to_string({exact_eq, [Type1, Op, Type2]}) -> fmt("~!^The test ~!!~s ~s ~s~!^ can never evaluate to 'true'", [Type1, Op, Type2]); message_to_string({fun_app_args, [Args, Type]}) -> fmt("~!^Fun application with arguments ~!!~s~!^ will fail" " since the function has type ~!!~s", [Args, Type]); message_to_string({fun_app_no_fun, [Op, Type, Arity]}) -> fmt("~!^Fun application will fail since ~!!~s ~!^::~!! ~s" " is not a function of arity ~!!~w", [Op, Type, Arity]); message_to_string({guard_fail, []}) -> "~!^Clause guard cannot succeed.~!!"; message_to_string({guard_fail, [Arg1, Infix, Arg2]}) -> fmt("~!^Guard test ~!!~s ~s ~s~!^ can never succeed", [Arg1, Infix, Arg2]); message_to_string({neg_guard_fail, [Arg1, Infix, Arg2]}) -> fmt("~!^Guard test not(~!!~s ~s ~s~!^) can never succeed", [Arg1, Infix, Arg2]); message_to_string({guard_fail, [Guard, Args]}) -> fmt("~!^Guard test ~!!~w~s~!^ can never succeed", [Guard, Args]); message_to_string({neg_guard_fail, [Guard, Args]}) -> fmt("~!^Guard test not(~!!~w~s~!^) can never succeed", [Guard, Args]); message_to_string({guard_fail_pat, [Pat, Type]}) -> fmt("~!^Clause guard cannot succeed. The ~!!~s~!^ was matched" " against the type ~!!~s", [Pat, Type]); message_to_string({improper_list_constr, [TlType]}) -> fmt("~!^Cons will produce an improper list" " since its ~!b2~!!nd~!^ argument is~!! ~s", [TlType]); message_to_string({no_return, [Type|Name]}) -> NameString = case Name of [] -> fmt("~!^The created fun "); [F, A] -> fmt("~!^Function ~!r~w/~w ", [F, A]) end, case Type of no_match -> fmt("~s~!^has no clauses that will ever match",[NameString]); only_explicit -> fmt("~s~!^only terminates with explicit exception", [NameString]); only_normal -> fmt("~s~!^has no local return", [NameString]); both -> fmt("~s~!^has no local return", [NameString]) end; message_to_string({record_constr, [RecConstr, FieldDiffs]}) -> fmt("~!^Record construction ~!!~s~!^ violates the" " declared type of field ~!!~s", [RecConstr, FieldDiffs]); message_to_string({record_constr, [Name, Field, Type]}) -> fmt("~!^Record construction violates the declared type for ~!!#~w{}~!^" " since ~!!~s~!^ cannot be of type ~!!~s", [Name, Field, Type]); message_to_string({record_matching, [String, Name]}) -> fmt("~!^The ~!!~s~!^ violates the" " declared type for ~!!#~w{}", [String, Name]); message_to_string({record_match, [Pat, Type]}) -> fmt("~!^Matching of ~!!~s~!^ tagged with a record name violates the" " declared type of ~!!~s", [Pat, Type]); message_to_string({pattern_match, [Pat, Type]}) -> fmt("~!^The ~s~!^ can never match the type ~!g~s", [bad_pat(Pat), Type]); message_to_string({pattern_match_cov, [Pat, Type]}) -> fmt("~!^The ~s~!^ can never match since previous" " clauses completely covered the type ~!g~s", [bad_pat(Pat), Type]); message_to_string({unmatched_return, [Type]}) -> fmt("~!^Expression produces a value of type ~!!~s~!^," " but this value is unmatched", [Type]); message_to_string({unused_fun, [F, A]}) -> fmt("~!^Function ~!r~w/~w~!!~!^ will never be called", [F, A]); %%----- Warnings for specs and contracts ------------------- message_to_string({contract_diff, [M, F, _A, Contract, Sig]}) -> fmt("~!^Type specification ~!!~w:~w~s~!^" " is not equal to the success typing: ~!!~w:~w~s", [M, F, Contract, M, F, Sig]); message_to_string({contract_subtype, [M, F, _A, Contract, Sig]}) -> fmt("~!^Type specification ~!!~w:~w~s~!^" " is a subtype of the success typing: ~!!~w:~w~s", [M, F, Contract, M, F, Sig]); message_to_string({contract_supertype, [M, F, _A, Contract, Sig]}) -> fmt("~!^Type specification ~!!~w:~w~s~!^" " is a supertype of the success typing: ~!!~w:~w~s", [M, F, Contract, M, F, Sig]); message_to_string({contract_range, [Contract, M, F, ArgStrings, Line, CRet]}) -> fmt("~!^The contract ~!!~w:~w~s~!^ cannot be right because the" " inferred return for ~!!~w~s~!^ on line ~!!~w~!^ is ~!!~s", [M, F, Contract, F, ArgStrings, Line, CRet]); message_to_string({invalid_contract, [M, F, A, Sig]}) -> fmt("~!^Invalid type specification for function~!! ~w:~w/~w." "~!^ The success typing is~!! ~s", [M, F, A, Sig]); message_to_string({extra_range, [M, F, A, ExtraRanges, SigRange]}) -> fmt("~!^The specification for ~!!~w:~w/~w~!^ states that the function" " might also return ~!!~s~!^ but the inferred return is ~!!~s", [M, F, A, ExtraRanges, SigRange]); message_to_string({overlapping_contract, [M, F, A]}) -> fmt("~!^Overloaded contract for ~!!~w:~w/~w~!^ has overlapping" " domains; such contracts are currently unsupported and are simply " "ignored", [M, F, A]); message_to_string({spec_missing_fun, [M, F, A]}) -> fmt("~!^Contract for function that does not exist: ~!!~w:~w/~w", [M, F, A]); %%----- Warnings for opaque type violations ------------------- message_to_string({call_with_opaque, [M, F, Args, ArgNs, ExpArgs]}) -> fmt("~!^The call ~!!~w:~w~s~!^ contains ~!!~s~!^ when ~!!~s", [M, F, bad_arg(ArgNs, Args), form_positions(ArgNs), form_expected(ExpArgs)]); message_to_string({call_without_opaque, [M, F, Args, [{N,_,_}|_] = ExpectedTriples]}) -> fmt("~!^The call ~!!~w:~w~s ~!^does not have~!! ~s", [M, F, bad_arg(N, Args), form_expected_without_opaque(ExpectedTriples)]); message_to_string({opaque_eq, [Type, _Op, OpaqueType]}) -> fmt("~!^Attempt to test for equality between a term of type ~!!~s~!^" " and a term of opaque type ~!!~s", [Type, OpaqueType]); message_to_string({opaque_guard, [Arg1, Infix, Arg2, ArgNs]}) -> fmt("~!^Guard test ~!!~s ~s ~s~!^ contains ~!!~s", [Arg1, Infix, Arg2, form_positions(ArgNs)]); message_to_string({opaque_guard, [Guard, Args]}) -> fmt("~!^Guard test ~!!~w~s~!^ breaks the opaqueness of its" " argument", [Guard, Args]); message_to_string({opaque_match, [Pat, OpaqueType, OpaqueTerm]}) -> Term = if OpaqueType =:= OpaqueTerm -> "the term"; true -> OpaqueTerm end, fmt("~!^The attempt to match a term of type ~!!~s~!^ against the" "~!! ~s~!^ breaks the opaqueness of ~!!~s", [OpaqueType, Pat, Term]); message_to_string({opaque_neq, [Type, _Op, OpaqueType]}) -> fmt("~!^Attempt to test for inequality between a term of type ~!!~s" "~!^ and a term of opaque type ~!!~s", [Type, OpaqueType]); message_to_string({opaque_type_test, [Fun, Args, Arg, ArgType]}) -> fmt("~!^The type test ~!!~s~s~!^ breaks the opaqueness of the term " "~!!~s~s", [Fun, Args, Arg, ArgType]); message_to_string({opaque_size, [SizeType, Size]}) -> fmt("~!^The size ~!!~s~!^ breaks the opaqueness of ~!!~s", [SizeType, Size]); message_to_string({opaque_call, [M, F, Args, Culprit, OpaqueType]}) -> fmt("~!^The call ~!!~s:~s~s~!^ breaks the opaqueness of the term~!!" " ~s :: ~s", [M, F, Args, Culprit, OpaqueType]); %%----- Warnings for concurrency errors -------------------- message_to_string({race_condition, [M, F, Args, Reason]}) -> fmt("~!^The call ~!!~w:~w~s ~s", [M, F, Args, Reason]); %%----- Warnings for behaviour errors -------------------- message_to_string({callback_type_mismatch, [B, F, A, ST, CT]}) -> fmt("~!^The inferred return type of~!! ~w/~w (~s) ~!^" "has nothing in common with~!! ~s, ~!^which is the expected" " return type for the callback of~!! ~w ~!^behaviour", [F, A, ST, CT, B]); message_to_string({callback_arg_type_mismatch, [B, F, A, N, ST, CT]}) -> fmt("~!^The inferred type for the~!! ~s ~!^argument of~!!" " ~w/~w (~s) ~!^is not a supertype of~!! ~s~!^, which is" "expected type for this argument in the callback of the~!! ~w " "~!^behaviour", [ordinal(N), F, A, ST, CT, B]); message_to_string({callback_spec_type_mismatch, [B, F, A, ST, CT]}) -> fmt("~!^The return type ~!!~s~!^ in the specification of ~!!" "~w/~w~!^ is not a subtype of ~!!~s~!^, which is the expected" " return type for the callback of ~!!~w~!^ behaviour", [ST, F, A, CT, B]); message_to_string({callback_spec_arg_type_mismatch, [B, F, A, N, ST, CT]}) -> fmt("~!^The specified type for the ~!!~s~!^ argument of ~!!" "~w/~w (~s)~!^ is not a supertype of ~!!~s~!^, which is" " expected type for this argument in the callback of the ~!!~w" "~!^ behaviour", [ordinal(N), F, A, ST, CT, B]); message_to_string({callback_missing, [B, F, A]}) -> fmt("~!^Undefined callback function ~!!~w/~w~!^ (behaviour ~!!" "'~w'~!^)",[F, A, B]); message_to_string({callback_info_missing, [B]}) -> fmt("~!^Callback info about the ~!r~w~!!~!^" " behaviour is not available", [B]); %%----- Warnings for unknown functions, types, and behaviours ------------- message_to_string({unknown_type, {M, F, A}}) -> fmt("~!^Unknown type ~!r~w:~w/~w", [M, F, A]); message_to_string({unknown_function, {M, F, A}}) -> fmt("~!^Unknown function ~!r~w:~w/~w", [M, F, A]); message_to_string({unknown_behaviour, B}) -> fmt("~!^Unknown behaviour ~!r~w", [B]). %%----------------------------------------------------------------------------- %% Auxiliary functions below %%----------------------------------------------------------------------------- call_or_apply_to_string(ArgNs, FailReason, SigArgs, SigRet, {IsOverloaded, Contract}) -> PositionString = form_position_string(ArgNs), case FailReason of only_sig -> case ArgNs =:= [] of true -> %% We do not know which argument(s) caused the failure fmt("~!^will never return since the success typing arguments" " are ~!!~s", [SigArgs]); false -> fmt("~!^will never return since it differs in the~!!" " ~s ~!^argument from the success typing" " arguments:~!! ~s", [PositionString, good_arg(ArgNs, SigArgs)]) end; only_contract -> case (ArgNs =:= []) orelse IsOverloaded of true -> %% We do not know which arguments caused the failure fmt("~!^breaks the contract~!! ~s", [good_arg(ArgNs, Contract)]); false -> fmt("~!^breaks the contract~!! ~s ~!^in the~!!" " ~s ~!^argument", [good_arg(ArgNs, Contract), PositionString]) end; both -> fmt("~!^will never return since the success typing is " "~!!~s ~!^->~!! ~s ~!^and the contract is ~!!~s", [good_arg(ArgNs, SigArgs), SigRet, good_arg(ArgNs, Contract)]) end. form_positions(ArgNs) -> case ArgNs of [_] -> "an opaque term as "; [_,_|_] -> "opaque terms as " end ++ form_position_string(ArgNs) ++ case ArgNs of [_] -> " argument"; [_,_|_] -> " arguments" end. %% We know which positions N are to blame; %% the list of triples will never be empty. form_expected_without_opaque([{N, T, TStr}]) -> FStr = case erl_types:t_is_opaque(T) of true -> "~!^an opaque term of type~!g ~s ~!^as "; false -> "~!^a term of type ~!g~s ~!^(with opaque subterms) as " end ++ form_position_string([N]) ++ "~!^ argument", fmt(FStr, [TStr]); form_expected_without_opaque(ExpectedTriples) -> %% TODO: can do much better here {ArgNs, _Ts, _TStrs} = lists:unzip3(ExpectedTriples), "opaque terms as " ++ form_position_string(ArgNs) ++ " arguments". form_expected(ExpectedArgs) -> case ExpectedArgs of [T] -> TS = erl_types:t_to_string(T), case erl_types:t_is_opaque(T) of true -> fmt("~!^an opaque term of type ~!!~s~!^ is" " expected", [TS]); false -> fmt("~!^a structured term of type ~!!~s~!^ is" " expected", [TS]) end; [_,_|_] -> fmt("~!^terms of different types are expected in these" " positions", []) end. form_position_string(ArgNs) -> case ArgNs of [] -> ""; [N1] -> ordinal(N1); [_,_|_] -> [Last|Prevs] = lists:reverse(ArgNs), ", " ++ Head = lists:flatten([fmt(", ~s",[ordinal(N)]) || N <- lists:reverse(Prevs)]), Head ++ " and " ++ ordinal(Last) end. ordinal(1) -> fmt("~!B1~!!st"); ordinal(2) -> fmt("~!B2~!!nd"); ordinal(3) -> fmt("~!B3~!!rd"); ordinal(N) when is_integer(N) -> fmt("~!B~w~!!th", [N]). bad_pat("pattern " ++ P) -> fmt("pattern ~!r~s",[P]); bad_pat("variable " ++ P) -> fmt("variable ~!r~s",[P]); bad_pat(P) -> fmt("~!r~s",[P]). bad_arg(N, Args) -> color_arg(N, r, Args). good_arg(N, Args) -> color_arg(N, g, Args). color_arg(N, C, Args) when is_integer(N) -> color_arg([N], C, Args); color_arg(Ns, C, Args) -> {Args1, Rest} =seperate_args(Args), Args2 = highlight(Ns, 1, C, Args1), join_args(Args2) ++ Rest. highlight([], _N, _C, Rest) -> Rest; highlight([N | Nr], N, g, [Arg | Rest]) -> [fmt("~!g~s", [Arg]) | highlight(Nr, N+1, g, Rest)]; highlight([N | Nr], N, r, [Arg | Rest]) -> [fmt("~!r~s", [Arg]) | highlight(Nr, N+1, r, Rest)]; highlight(Ns, N, C, [Arg | Rest]) -> [Arg | highlight(Ns, N + 1, C, Rest)]. seperate_args([$( | S]) -> seperate_args([], S, "", []). %% We strip this space since dialyzer is inconsistant in adding or not adding %% it .... seperate_args([], [$,, $\s | R], Arg, Args) -> seperate_args([], R, [], [lists:reverse(Arg) | Args]); seperate_args([], [$, | R], Arg, Args) -> seperate_args([], R, [], [lists:reverse(Arg) | Args]); seperate_args([], [$) | Rest], Arg, Args) -> {lists:reverse([lists:reverse(Arg) | Args]), Rest}; seperate_args([C | D], [C | R], Arg, Args) -> seperate_args(D, R, [C | Arg], Args); %% Brackets seperate_args(D, [${ | R], Arg, Args) -> seperate_args([$}|D], R, [${ | Arg], Args); seperate_args(D, [$( | R], Arg, Args) -> seperate_args([$)|D], R, [$( | Arg], Args); seperate_args(D, [$[ | R], Arg, Args) -> seperate_args([$]|D], R, [$[ | Arg], Args); seperate_args(D, [$< | R], Arg, Args) -> seperate_args([$>|D], R, [$< | Arg], Args); %% 'strings' seperate_args(D, [$' | R], Arg, Args) -> seperate_args([$'|D], R, [$' | Arg], Args); seperate_args(D, [$" | R], Arg, Args) -> seperate_args([$"|D], R, [$" | Arg], Args); seperate_args(D, [C | R], Arg, Args) -> seperate_args(D, R, [C | Arg], Args). join_args(Args) -> [$(, string:join(Args, ", "), $)].