| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch does two things:
1. it broadens the interface for the compiler module so that
non-first-file modules can possibly be parallelized. This is done by
dynamically switching on `[ListOfFiles]`, which remains sequential as
before, or `{[SeqPriority], [Parallel]}`, which divides regular files
between higher priority ones and those that can be in parallel
2. implements this mechanism in the rebar compiler, based on the erl
file digraph. If a file has an in-neighbour, it is depended on by
another file. The mechanism therefore makes it so all files that have
dependants get compiled in their strict relative sequential order
first, and then the undepended-on files get compiled together in
parallel.
By running:
./rebar3 ct --suite test/rebar_compile_SUITE.erl --case \
recompile_when_parse_transform_inline_changes --repeat 50
the previous iteration of this would rapidly fail, and this one succeeds
every time.
|
|
|
|
|
| |
Support for parallel compilation of *.erl file was dropped before 3.0 release.
However, our tests for a project containing ~500 source files show substantial gain, lowering compilation time from 58 seconds to 18 on a MacBook Pro 15" (4 cores, 8 threads), and to just 10 seconds on Xeon-D machine.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This change fixes cases where changes in .hrl files would not be picked
up in .erl files that are in extra source directories (such as those
defined with `extra_src_dirs` or modules in the test/ directory during a
CT or Eunit run).
The problem was due to the way the Directed Acyclic Graph (DAG) of
dependencies between files was being loaded and stored by the compiler
modules.
Prior to this fix, a single DAG would be used for all runs. On a regular
run, the prior DAG is loaded from disk, re-checked, and if changed, it
would get re-written to disk with the changes deciding what to
re-compile. However, whenever extra source directories were specified, a
second run would be done which swaps target directories around in the
compiler modules.
Bug 1: this second run was done without properly tracking the private .hrl
files (in src/), so the changes were invisible. This has been fixed by
re-adding the paths.
The problem is that the DAG handling is self-contained; just invoking it
was sufficient to get it loaded and rewritten to disk. But since runs
with extra src dirs were done on different sets, the compilation of
extra src dirs would be done with bad historical data (all the modules
in src/ are dropped, all those in test/ are re-added); this DAG was then
written to disk once again, polluting the next non-extra run.
This is bug 2, and it is fixed by adding an optional label to each run
so that a regular or extra compile round can be distinguished, each
tracking their own files in their own DAG.
A single test (and a lot of diffing) were sufficient for this.
|
| |
|
| |
|
| |
|
|
|
|
| |
Also handle some formatting
|
|
* add compile type for dynamic project compilation
* new rebar_compiler abstraction for running multiple compilers
rebar_compiler is a new behaviour that a plugin can implement to
be called on any ues of the compile provider to compile source
files and keep track of their dependencies.
* fix check that modules in .app modules list are from src_dirs
* use project_type to find module for building projects
* allow plugins to add project builders and compilers
|