summaryrefslogtreecommitdiff
path: root/src/ht.erl
blob: a51924d29ab9b140b3324e52b4067bc27babf14c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
%%% Copyright (c) 2014, NORDUnet A/S.
%%% See LICENSE for licensing information.
%%%
%%% Implementation of a history tree as described in Efficient Data
%%% Structures for Tamper-Evident Logging [0]. This implementation
%%% follows RFC 6962 and differs from [0] only in how non-full trees
%%% are handled.
%%%
%%% [0] https://www.usenix.org/event/sec09/tech/full_papers/crosby.pdf
%%%
%%% Hashes of inner nodes and leaves are stored in arrays, one per
%%% layer with layer 0 being where the leaves are. The total number of
%%% arrays is equal to the depth of the tree. The depth of the tree is
%%% ceil(lg2(number of leaves)).
%%% Let {r,i} denote the hash with index i on layer r. The first leaf
%%% is {0,0}, second is {0,1} and n:th is {0,n-1}.
%%% The parent of {r,i} is {r+1,floor(i/2)} (not strictly true because
%%% of "placeholder nodes", see update_parent/4).
%%% The sibling of {r,i} is {r,i+1} when i is even and {r,i-1} when i
%%% is odd.

-module(ht).
-behaviour(gen_server).

-export([size/0, add/1, tree_hash/0, tree_hash/1]).
-export([get_incl/2, get_cons/2]).
-export([start_link/0, start_link/1, stop/0]).
-export([init/1, handle_call/3, terminate/2, handle_cast/2, handle_info/2,
         code_change/3]).

-include("$CTROOT/plop/include/plop.hrl").
-include_lib("eunit/include/eunit.hrl").
-import(lists, [foreach/2, foldl/3, reverse/1]).

%% Data types.
-record(tree, {version :: integer(),
               evaluated :: integer(),
               store :: ts:tree_store()}).
-type tree() :: #tree{}.

%%%%%%%%%%%%%%%%%%%%
%% Public interface.
start_link() ->
    gen_server:start_link({local, ?MODULE}, ?MODULE, [], []).
start_link(NEntries) ->
    gen_server:start_link({local, ?MODULE}, ?MODULE, [NEntries], []).
stop() ->
    gen_server:call(?MODULE, stop).
size() ->
    gen_server:call(?MODULE, size).
add(Entry) ->
    gen_server:call(?MODULE, {add, Entry}).
tree_hash() ->
    gen_server:call(?MODULE, tree_hash).
tree_hash(Version) ->
    gen_server:call(?MODULE, {tree_hash, Version}).
get_incl(I, V) ->
    gen_server:call(?MODULE, {inclusion, I, V}).
get_cons(V1, V2) ->
    gen_server:call(?MODULE, {consistency, V1, V2}).

%% gen_server callbacks
init([]) ->
    {ok, new()};
init(Args) ->
    {ok, new(Args)}.
handle_cast(_Request, State) ->
    {noreply, State}.
handle_info(_Info, State) ->
    {noreply, State}.
code_change(_OldVersion, State, _Extra) ->
    {ok, State}.
terminate(_Reason, _State) ->
    ok.
handle_call(stop, _From, State) ->
    {stop, normal, stopped, State};
handle_call(size, _From, State) ->
    {reply, State#tree.version + 1, State};
handle_call({add, Entry}, _From, State) ->
    {reply, ok, add(State, Entry)};
handle_call(tree_hash, _From, State) ->
    {NewState, Hash} = tree_hash(State, State#tree.version),
    {reply, Hash, NewState};
handle_call({tree_hash, Version}, _From, State) ->
    {NewState, Hash} = tree_hash(State, Version),
    {reply, Hash, NewState};
handle_call({inclusion, _Index, _Version}, _From, State) ->
    {reply, nyi, State};
handle_call({consistency, _Version1, _Version2}, _From, State) ->
    {reply, nyi, State}.

%%%%%%%%%%%%%%%%%%%%
%% Private.
-spec get_hash(tree(), non_neg_integer(), tuple()) -> {tree(), binary()}.
get_hash(Tree, Version, IR) ->
    NewTree = update(Tree, Version),
    Hash = ts:retrieve_hash(NewTree#tree.store, IR),
    {NewTree, Hash}.

%% FIXME: rename to tree_head or maybe just head?
-spec tree_hash(tree(), integer()) -> {tree(), binary()}.
tree_hash(Tree, -1) ->
    {Tree, hash(<<"">>)};
tree_hash(Tree = #tree{version = V}, Version) when Version == V ->
    get_hash(Tree, Version, {0, depth(Tree) - 1});
tree_hash(Tree = #tree{version = V}, Version) when Version > V ->
    {Tree, enotimetravel};
tree_hash(Tree, Version) ->
    old_version_tree_head(update(Tree, Version), Version).

-spec old_version_tree_head(tree(), non_neg_integer()) -> {tree(), binary()}.
old_version_tree_head(Tree, Version) ->
    true = Tree#tree.evaluated >= Version,      % ASSERTION
    %% Go up the tree from the rightmost leaf (index=Version) until a
    %% left node is found. (There is always one -- the head is a left
    %% node.)
    {FirstLeftR, FirstLeftI} = first_left_node(0, Version),

    %% Walk up the tree from this lowest left node up to and including
    %% the last right node, rehashing as we go. Calculate the parent
    %% hash of that node and its sibling. Return that hash.
    {NewTree, LeftHash} = get_hash(Tree, Version, {FirstLeftI, FirstLeftR}),
    last_right_node_rehash(NewTree, Version, FirstLeftR, FirstLeftI, LeftHash).

-spec last_right_node_rehash(tree(), non_neg_integer(), non_neg_integer(),
                             non_neg_integer(), binary()) -> {tree(), binary()}.
last_right_node_rehash(Tree, _Version, _Layer, 0, RightNodeHash) ->
    {Tree, RightNodeHash};
last_right_node_rehash(Tree, Version, Layer, Index, RightNodeHash) ->
    {NewTree, Hash} =
        case right_node_p(Index) of
            true ->
                {T2, LHash} = get_hash(Tree, Version, {Index - 1, Layer}),
                {T2, mkinnerhash(LHash, RightNodeHash)};
            false ->
                {Tree, RightNodeHash}
        end,
    last_right_node_rehash(NewTree, Version, Layer + 1, parent(Index), Hash).

-spec first_left_node(non_neg_integer(), non_neg_integer()) ->
                             {non_neg_integer(), non_neg_integer()}.
first_left_node(Layer, Index) ->
    case right_node_p(Index) of
        true -> first_left_node(Layer + 1, parent(Index));
        false -> {Layer, Index}
    end.

%% @doc Add an entry but don't update the tree.
-spec add(tree(), binary()) -> tree().
add(Tree = #tree{version = V, store = Store}, Entry) ->
    NewVersion = V + 1,
    LeafIndex = NewVersion,
    LeafHash = mkleafhash(Entry),
    Tree#tree{version = NewVersion,
              store = ts:store(Store, {LeafIndex, 0}, LeafHash)}.

-spec new() -> tree().
new() ->
    #tree{version = -1,
          evaluated = -1,
          store = ts:new()}.

-spec new([non_neg_integer()]) -> tree().
new([Version]) when is_integer(Version) ->
    foldl(fun(#mtl{entry = E}, Tree) ->
                  D = (E#timestamped_entry.entry)#plop_entry.data,
                  add(Tree, D) % Return value -> Tree in next invocation.
          end, new(), db:get_by_index_sorted(0, Version));
new([List]) when is_list(List) ->
    foldl(fun(D, Tree) ->
                  add(Tree, D) % Return value -> Tree in next invocation.
          end, new(), List).

%% @doc Calculate hashes in Tree up to and including node with index
%% equal to Version. Update Tree.evaluated to reflect the new state.
-spec update(tree(), non_neg_integer()) -> tree().
update(Tree, 0) ->
    %% A version 0 tree needs no updating.
    Tree;
update(Tree = #tree{evaluated = E}, V) when E >= V ->
    %% Evaluated enough already. Nothing to do.
    Tree;
update(Tree = #tree{version = MaxV}, V) when V > MaxV ->
    %% Asking for more than we've got. Do as much as possible.
    update(Tree, MaxV);
update(Tree = #tree{evaluated = Evaluated}, Version) ->
    NewTree = update_layer(Tree, 0, Evaluated + 1, Version),
    NewTree#tree{evaluated = Version}.

%% @doc Update the tree wrt the leaves ICur..ILast.
-spec update_layer(tree(), non_neg_integer(), non_neg_integer(),
                   non_neg_integer()) -> tree().
update_layer(Tree, _Layer, _ICur, 0) ->         % Done
    Tree;
update_layer(Tree, Layer, ICur, ILast) ->
    %% Update parents on next upper layer, starting with a left
    %% child <= ICur and ending with ILast. Recurse with next layer.
    NewStore = update_parent(Tree#tree.store, Layer,
                             strip_bits_bottom(ICur, 1), ILast),
    update_layer(Tree#tree{store = NewStore}, Layer + 1,
                 parent(ICur), parent(ILast)).

%% @doc Update parents of I..ILast, on Layer+1. I has to be a left child.
-spec update_parent(ts:tree_store(), non_neg_integer(), non_neg_integer(),
                    non_neg_integer()) -> ts:tree_store().
update_parent(S, Layer, I, ILast) when I >= ILast ->
    %% We're done updating parents. If ILast is a left child, copy it
    %% to where its parent would've been were it a right child. This
    %% is a "placeholder node" which simplifies when creating
    %% incomplete ("non-frozen") trees.
    case right_node_p(ILast) of
        true -> S;
        _ -> ts:append(S, Layer + 1, ts:retrieve_hash(S, {ILast, Layer}))
    end;
update_parent(S, Layer, I, ILast) ->
    false = right_node_p(I),                    % ASSERTION
    %% Make an inner node hash of I and sibling. Store it as
    %% parent. Recurse with next pair of leaves.
    update_parent(ts:store(S, {parent(I), Layer + 1},
                  mkinnerhash(ts:retrieve_hash(S, {I, Layer}),
                              ts:retrieve_hash(S, {I + 1, Layer}))),
                  Layer, I + 2, ILast).

%% @doc Parent of {i, r} is at {i/2, r+1} (unless it's a "placeholder").
parent(I) ->
    I bsr 1.

-spec right_node_p(integer()) -> boolean().
right_node_p(Index) ->
    case Index band 1 of
        1 -> true;
        _ -> false
    end.

strip_bits_bottom(N, Nbits) ->
    (N bsr Nbits) bsl Nbits.

%% @doc Return position of highest bit set, counting from the least
%% significant bit, starting at 1.
bitpos_first_set(N) ->
    L = [Bit || <<Bit:1>> <= binary:encode_unsigned(N)],
    length(L) - ffs(L, 0).
ffs([], Acc) ->
    Acc;
ffs([H|T], Acc) ->
    case H of
        0 -> ffs(T, Acc + 1);
        _ -> Acc
    end.

depth(#tree{version = -1}) ->
    0;
depth(#tree{version = V}) ->
    bitpos_first_set(V) + 1.

-spec mkleafhash(binary()) -> binary().
mkleafhash(Data) ->
    hash([<<"\x00">>, Data]).

-spec mkinnerhash(binary(), binary()) -> binary().
mkinnerhash(Hash1, Hash2) ->
    hash([<<"\x01">>, Hash1, Hash2]).

-spec hash(binary()) -> binary() | iolist().
hash(Data) ->
    crypto:hash(sha256, Data).

%%%%%%%%%%%%%%%%%%%%
%% Testing ht.
-define(TEST_VECTOR_LEAVES,
        ["", "\x00", "\x10", " !", "01", "@ABC", "PQRSTUVW", "`abcdefghijklmno"]).
-define(TEST_VECTOR_HASHES,
        ["6e340b9cffb37a989ca544e6bb780a2c78901d3fb33738768511a30617afa01d",
         "fac54203e7cc696cf0dfcb42c92a1d9dbaf70ad9e621f4bd8d98662f00e3c125",
         "aeb6bcfe274b70a14fb067a5e5578264db0fa9b51af5e0ba159158f329e06e77",
         "d37ee418976dd95753c1c73862b9398fa2a2cf9b4ff0fdfe8b30cd95209614b7",
         "4e3bbb1f7b478dcfe71fb631631519a3bca12c9aefca1612bfce4c13a86264d4",
         "76e67dadbcdf1e10e1b74ddc608abd2f98dfb16fbce75277b5232a127f2087ef",
         "ddb89be403809e325750d3d263cd78929c2942b7942a34b77e122c9594a74c8c",
         "5dc9da79a70659a9ad559cb701ded9a2ab9d823aad2f4960cfe370eff4604328"]).

%% FIXME: Don't start and stop the server manually all the time. EUnit
%% can help.
test_init(L) ->
    stop(),
    {ok, _Pid} = start_link(L).

%% @doc Build tree using add/2 and mth/2 and compare the resulting
%% tree hashes.
%% FIXME: Move outside.
add_test() ->
    lists:foreach(
      fun(X) -> L = lists:sublist(?TEST_VECTOR_LEAVES, X),
                test_init(L),
                ?assertEqual(mth(L), tree_hash()) end,
      random_entries(length(?TEST_VECTOR_LEAVES))).

%% FIXME: Move outside.
old_versions_test() ->
    test_init(?TEST_VECTOR_LEAVES),
    ?assertEqual(mth(?TEST_VECTOR_LEAVES), tree_hash()),
    lists:foreach(
      fun(X) -> ?assertEqual(mth(lists:sublist(?TEST_VECTOR_LEAVES, X)),
                             tree_hash(X - 1)) end,
      random_entries(length(?TEST_VECTOR_LEAVES))).

%%%%%%%%%%%%%%%%%%%%
%% Testing the test helpers.
mth_test() ->
    lists:foreach(
      fun(X) -> ?assertEqual(
		   mth(lists:sublist(?TEST_VECTOR_LEAVES, X)),
		   hex:hexstr_to_bin(lists:nth(X, ?TEST_VECTOR_HASHES)))
      end,
      lists:seq(1, length(?TEST_VECTOR_LEAVES))).

%%%%%%%%%%%%%%%%%%%%
%% Test helpers.

random_entries(N) ->
    [V || {_, V} <- lists:sort(
                      [{random:uniform(N), E} || E <- lists:seq(1, N)])].

%% @doc Return the Merkle Tree Head for the leaves in L. Implements
%% the algorithm in section 2.1 of RFC 6962. Used for testing.
-spec mth(list()) -> binary().
mth([]) ->
    hash(<<"">>);
mth(L) ->
    case length(L) of
        1 -> hash([<<"\x00">>, L]);
        _ -> Split = 1 bsl (bitpos_first_set(length(L) - 1) - 1),
             {L1, L2} = lists:split(Split, L),  % TODO: PERF
             hash([<<"\x01">>, mth(L1), mth(L2)])
    end.